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Slow, steady, mechanically driven, axisymmetric motion of a stably stratified, 
electxicnlly conducting, rotating fluid is studied. Attention is focused upon the 
parameter values for which hydromagnetic effects first become important in a 
rotating stratified fluid and upon the nature of their influence on the interior flow 
of that fluid. It is found that hydromagnetic effects are able to alter the flow of 
a stratified rotating fluid a t  much weaker magnetic field strengths than the flow 
of an unstratified fluid. Specifically, the interior azimuthal flow is altered if 
E/a2 < aS < 1 or if E < a2 and 1 < as, where E = v/rRLa, a2 = 5B2/pQ and 
S = ZbTgv/C22KL. The hydromagnetic effects act to decrease the vertical shear 
in the azimuthal flow from the levels which would occur in the absence of magnetic 
fields. 

1. Introduction 
In  the past decade there has been a surge of interest in the study of rotating 

fluid flows including the effects of stratification and of magnetic fields. This has 
been motivated in part by a desire to understand better the planetary and solar 
interiors wherein rotating stratified hydromagnetic fluids are believed to occur. 
A great deal of work has been done on the behaviour of contained rotating fluids 
which are homogeneous (beginning with Greenspan & Howard 1963), stably 
stratified (beginning with Barcilon & Pedlosky 1967 a, b )  or hydromagnetic 
(beginning with Gilman & Benton 1968) but until recently no work has been done 
on the behaviour of a contained, rotating, stably stratified, hydromagnetic fluid. 

In  a closely related paper Loper (1975, herein referred to as L) analysed the 
steady flow of a stably stratified hydromagnetic fluid confined between two 
rotating infinite flat plates using a similarity transformation. He found that, with 
constant-heat-flux boundary conditions, the interior fluid exhibits columnar 
behaviour [av/az c O( l)] if the magnetic interaction parameter u2 is larger than 
Ei, regardless of the size of the stratification parameter a#. [For definitions of 
these parameters, see (2.6).] This is in contrast to non-magnetic flows, where 
laminated flow [av/az = 0(1)] occurs if Ei  < as, and in contrast to unstratified 
flows, where magnetic effects are important only if 1 < a2. Sinco similarity solu- 
tions may yield solutions which do not model the flow of completely contained 
fluids, the present paper will investigate whether the results of L are valid for 
contained fluids. 
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Typically, when one wishes to analyse the behaviour of a fluid under new con- 
ditions, a relatively simple problem is formulated which retains the physics but 
which poses a minimum of mathematical complications. The present study is no 
exception. In  this paper we shall consider the nature of the flow of an electrically 
conducting fluid which fills a rotating right circular cylinder. In  particular the 
magnitude of the vertical shear av/& of the zonal velocity is studied. The fluid has 
a thermally imposed stable density gradient and we specify constant-heat-flux 
boundary conditions. The cylinder is assumed to be an electrical insulator and a 
uniform axial magnetic field is applied. The flow is mechanically driven by differ- 
ential motion of the upper and lower boundaries. This problem may be thought 
of as an extension of that studied by Barcilon & Pedlosky (1967 a, b)  to include 
magneticeffectsor as an extension of that studied by Ingham (1969) endvempaty 
& Loper (1975) to include stratification. 

The simultaneous action of Coriolis, buoyant and magnetic forces is certain to 
exhibit a rich variety of new phenomena and to yield new length scales and force 
balances. Therefore a survey of the possible length scales and force balances 
which may occur is presented in appendix A after the problem has been formu- 
lated mathematically in Q 2. Following this, the flow problem is solved in Q$3-6. 
The interior is analysed in Q 3, the boundary layers on the end walls are analysed 
in $4, the side-wall boundary layers are studied in Q 5 and the problem is closed 
in 3 6. Finally a summary and a discussion of the results are presented in $7. 

2. Mathematical formulation 
We shall take as our starting point equations L(2.10)-L(2.17) [i.e. equations 

(2.10)-(2.17) of Loper 19751 with the Froude number set equal to zero; in this 
paper we shall concentrate upon the response of the fluid to only the mechanical 
forcing and shall neglect the thermally driven flow studied in L.? 

The equations may be simplified by simultaneous integration of L(2.14) and 
L(2.16) to yield 

This allows L(2.10) to be written as 

1G.,+(V2-r--2)q5 = 0. 

2v = p ,  + 2u2$* - E(V2 - r-2) $, (2.1) 

and the variable q5 has been eliminated from direct consideration. We may also 
eliminate the pressure from direct consideration by cross-differentiation of 
L(2.12) and (2.1) to arrive at  the set of equations 

2v, = T , + ~ z ~ $ ~ - E ( V ~ - ~ - ~ ) ~ $ ,  2$* = 2u2b,+E(V2-r-2)v, (2.2), (2 .3)  
c11 121 [31 [41 [51 [GI [71 

- ufir-l(r$), = E P T ,  v, + (Vz- r-2) b = 0, (2.41, (2.5) 
P I  [91 POI ~ 1 1  

t The assumption that E < 1 in L(Z.9) may be insufficient to ensure the validity of the 
present analysis. A more severe restriction on B may be necessary to maintain linearity in 
the side-wall boundary layers (see Barcilon 1970). 
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where V2 = a2/ar2 + r-l a/ar + 82/89 and 

E = V/nL2, aS = EATgV/Kfi2L, 2a2 = ZB2/p ,Q.  (2.6) 
The variables governed by (2.2)-(2.5) are the azimuthal velocity v, the fluid 
stream function @, the perturbation temperature T and the azimuthal magnetic 
field (or electric current stream function) b while a, L, v, Z, AT, g ,  K ,  3, B andp, are 
respectively the rotation rate, cylinder height, kinematic viscosity, thermal ex- 
pansion coefficient, temperature difference, acceleration due to gravity, thermal 
diffusivity, electrical conductivity, axial magnetic field strength and mean 
density. The terms in (2.2)-(2.5) have been numbered to allow individual refer- 
ence to them. Four types of forces have been included in the momentum equations 
(2.2) and (2.3): viscous ([4], [7]), Coriolis ([I], [5]), buoyancy ([2]) and magnetic 
~ 3 1 ,  PI). 

The boundary conditions for the problem are 

$ = $  2 2  = T = b = O ,  w=wB(r)  at z = O ,  (2.7 a )  
@ = @z = T, = b = 0, v = w&-) at x = 1, (2.7 b) 

$ = II., = T, = b = w = 0 at r = ro, ( 2 . 7 ~ )  

where Lr, is the radius of the cylinder. 
As a guide to the subsequent analysis, a survey of the possible length scales 

inherent in (2.2)-(2.5) is presented in appendix A. The results are given in tables 
1-3 and in figures 1 and 2. The co-ordinate axes in figures I and 2 are defined by 

a 2  = E - X ,  = E-U. (2.8) 

as < E-1, a2 < I. (2.9) 

It may be seen from figure 2 that the Ekman scale A1 exists provided that 

If (2.9) is satisfied, we may replace conditions (2.7) with the Ekman-Hartmann 
compatibility condit,ions simplified for a2 < 1 (see Loper 1975): 

(2.10a, b )  
(2.10c) 

(2.10d, e)  

(2.lO.f) 

(2.109) 

@ = gEa [wg(r) - w], 

$=- -  lEa [vT(r) - v], b = SEt [vT(r) - w] 

b = - -- 
at z = 0, P i  - W I }  

1 
T,  = aS[rw,(r) - rw],/2r 

at z = 1, 
T,  = aS[rw,(r) - rv],/2r 

@ = $, = T, = b = w = 0 a t  r = r,. 

When conditions (2.10) are employed, the axial viscous t.erms of (2.2) may be 
consistently neglected. This completes the formulation of the problcm and we 
now turn to investigation of the nature of the interior flow. 
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FIGURE 1. The x, y plane, showing the different regions ir 
and magnetic ( M )  forces are important. Viscous forces a~ 
regions. The parameters z and y are defined as z = -In ( 

1 .o 

' M & A  

0.5 

M & A  

M , A & C  x 
rhich buoyant ( A ) ,  Coriolis ( C )  
important on some scale in all 
/ E ) ,  y = -In (aS/E). 

3. The nature of the interior flow 
In  this section the qualitative nature of the interior flow is investigated for 

the parameter range E < t ~ i 3  < E-1, a2 < 1 [i.e. - 1 < y < 1, x < 0, where x andy 
are defined by (2.8)], which contains most cases of interest. It is seen that the 
interior flow is controlled by the boundary layers which occur on the cylinder's 
end walls (at z = 0, 1) and appears to be independent of the side-wall boundary 
layers which occur at r = yo. Detailed solutions for the end-wall boundary layers 
and interior flow are presented in Q 4 while the solutions for the side-wall boundary 
layers are presented and discussed in Q 5. The separate solutions found in $5  4 
and 5 are combined in Q 6, verifying the simple picture presented in this section. 
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A4 A%, A4 
B4 B2b, B4 

A l ,  A26, A5 
A l ,  A5 
8 4  

I 
-1.0 

A1 
B4, B5 

A1 
B1 

FIUURE 2.  The 2, y plane, listing the vertical (labelled A )  and horizontal (labelled B )  scales 
which occur for various parameter values. The nature of these scales is explained in 
tables 2-4. 

It is known from Ingham (1969) and Vempaty & Loper (1975) that the interior 
azimuthal velocity of a homogeneous hydromagnetic fluid is the average of that 

(3.1) of the end walls: 

for all values of a2. In  this case vi is small. On the other hand Barcilon & Pedlosky 
(1967 a, b )  found that in the absence of hydromagnetic effects 

vi = i [vB(r)  + vT(r)],  

if aS < El,} 
if E4 < 0;s. 

The goal of this section is to determine the order of magnitude of wi as a function 
of aS and a2 when both buoyant and magnetic forces are present. It will be seen 
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that the flow is affected by hydromagnetic forces for surprisingly small values of 
a2 when as is large. 

The forcing for the problem is provided by the functions 'vg(r) and vT(r) in the 
boundary conditions (2.10). We shall begin the analysis of this section by 
assuming a laminated flow of arbitrary strength, 

V;  = O(Ek), (3.3) 
then proceed to investigate the bounds of the size of the laminated flow which are 
necessary to  maintain these forcing terms of dominant order. 

The first step is to  determine the orders of magnitude of the interior variables 
$i,Tiandbiusing(2.2)-(2.5). Weshallassume thatintheinterior a/&, a/& = O(1) 
the viscous terms are small and term [3] of (2.2) is small. This last assumption 
may be verified a posteriori. From (2.2), (2.4) and (2.5) it  is easily found that 

(p, Ti, bi) = O(E'+k/aS, Ek, Ek). (3.4) 
The dependence of the interior variables on the axial co-ordinate z is governed 
by (2.3), which yields 

$: = 0 + O(a2Ek, E )  if aSa2 < E, (3.5a) 

or b; = O+O(El+k/uSa2) if E < d a 2 .  (3.5b) 

Because the viscous terms have been neglected in deriving (34, (3.5a) is valid 
only if a8 < 1. However (3.5b) is valid for all US provided E < a2. 

We may rewrite (2.4) as 
T,  = - r-l(aSE-lr$ + r q ) r .  (2.4~) 

In  any thin side-wall layer (2.4a) reduces to 

aSE-l$+q = 0. (3.6) 
If we were to specify side-wall conditions a t  r = r,, such that aSE-l@ + T, $: 0, this 
would force Y'2z =+ 0 since the side-wall layers cannot satisfy the boundary condi- 
tion. However since we specify aSE-l@+% = 0,  TEZ = 0 and (3.6) is valid both 
in the interior and in any side-wall layers. If (3.6) is valid then either (3.5~) or 
(3.5 b) leads to the conclusion that the variables vt, qF and Ti are independent of x 
to dominant order. 

Assuming that E*< v; (k < 81, (3.7) 
(3.4) reveals that E* < bi. This makes the boundary condition on b in (2.10) 
homogeneous; the forcing terms E*v, and E*v, are small. To simplify the analysis 
we shall further assume that the forcing provided through the conditions on T, is 
always negligible compared with the forcing for @in (2.10). This assumption may 
be verified a posteriori. I n  order that the conditions on $ remain inhomogeneous, 
we must specify 

in all regions: interior and boundary layers on z = 0 and z = 1. 
v 6 0(1) ,  $ 6 WE*) (3.81, (3.9) 

Using conditions (3.8) and (3.9) on the interior variables leads to the constraints 

v; < O(1) (k z O ) ,  (3.10) 

V: < O(VXE-*) (k > -9 N 4). (3.11) 
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These constraints are sufficient to reproduce the results of Barcilon & Pedlosky 
(19673) givenin (3.2). 

Constraints (3.10) and (3.11) are valid for the entire parameter range under 
consideration ( E  < aS < E-1, a2 < 1). We shall now determine the additional 
constraints which arise owing to (3.8) and (3.9) being applied within the 
boundary layers on z = 0 , l .  

As a result of assumption (3.7), the boundary conditions on b are homogeneous. 
This forces a correction term of the same size as bi: 

6 = O(Ek), 
where the tilde indicates a correction or boundary-layer variable. If aSa2 < E,  
6 satisfies the equation 

which has no intrinsic scale. In this case no new constraints on wi occur. However 
if E < aSa2, 6 satisfies boundary-layer equations near z = 0 and z = 1 of scale 
A7 if aSE < a2 or of scale A2b if a2 < aSE. In  either case additional constraints 
on v: occur, as we shall now see. 

Scale A7 existsifE/a2 < a8 < a2/E and$ < 1 ( -  1 -x < y < 1 +xandx < 0). 
In  this case we see from table 2 that 

(V2-r--2) 6 = 0, 

8/82 = O(aSa2/E)* = O(E-*(l+x+V)). 
With b"A7 = O(E+k), 

G A ~  = o ( E ~ ( u s ~ ~ / E ) * )  = O(Eka(l+z+~)) 
and qA7 = O(Eka2) = O(Ek-x). 
From (3.8) and (3.9) it  follows that 

and 
vi < O(E/aSa2)t (k 2 g(1 + x + y ) )  (3.12) 
wi < O(Eh/a2) (k 2 ++x). (3.13) 

Constraint (3.12) is more severe if E/a2 < aS < a2/E and a6/E < aS (3x + 1 < y)  
and - 1 - x < y < 1 -b x) while constraint (3.13) is more severe if E/a2 < aS < a6/E 
anda2< l ( - l - x < y <  3 x + l a n d x < 0 ) .  

Scale A2b exists if a2 < CSE < 1 and E < a2 (1 + x < y < 1 and - 1 < x). In  
this case we see from table 2 that 

a/az = 0 ( a 2 / ~ ) &  = O(E-B(~+X)) .  

[It should be remarked that scale A2b is the Hartmann scale, which is larger than 
the Ekman scale provided a2 1, and we may consistently use the Ekman- 
Hartmann compatibility conditions (2.10).] It is found that 

gA2b = o(Ek(a2/E)*) = 0(Ek-!d1+.)) 
and $A2b = O(E"a2) = O(EkWx). 
Constraints (3.8) and (3.9) now lead to 

v; < O(Et /a)  (k 2 a++%) (3.14) 

and (3.13) again. Throughout the region of existence of scale A2b, constraint 
(3.14) is more severe than (3.13). 

In  summary there are five constraints on the size of the laminated flow: two, 
(3.10) and (3.11), valid for all x and y and three, (3.12)-(3.14), valid for limited 
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Y 
No Ekman layers 

k=O 0.1 0.2 0.3 0.4 

1 
0.5 

1.5 

d.' <O(E+) 
dz 

'x 

@ <O(Ei) 
dz 

FIGURE 3. The strength of the laminated flow as a function of x and y. The parameter k is 
defined by dvjldz = O(Ek). If x > 0 or y < - 1.0, dvi/dz is less than E* and this theory does 
not apply. The symbols ?id, @, 6,, and Bdgb denote the variable and scale which 
control the interior in each of five parameter regions. 

-, 

ranges of x and y. Each of these constraints is dominant in aregion of the x, y plane 
and controls the size of the lamination parameter k for values of the parameters 
lying within that region. The size of k for all five regions is contoured on the x, y 
plane in figure 3. The limiting variable for each region is noted on the figure. 

For values of the parameters lying within the region of the 2, y plane where 
k = 0 in figure 3, the interior flow is laminated to dominant order. In  this case the 
Ekman layers are absent, the interior flow directly satisfies the boundary condi- 
tions on the azimuthal velocity at the end walls and meridional circulation is 
suppressed. A value of k less than zero on figure 3 indicates that laminated flow is 
of smaller than unit order; that is, vi is independent of x to dominant order. In  
this case one would anticipate that the interior azimuthal velocity is the average 
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of the top and bottom speeds: vi = +[uB(r) +vr(r)] .  It is seen in $ 4  that this is 
indeed the case. 

The Ekman layers are absent to dominant order for parameter values lying 
within the regions of the x, y plane marked ZA, and 'uA2b in figure 3. In  these cases 
the interior azimuthal velocity is matched by the azimuthal velocity in the layers 
with scale A7 or A2b, and the order of the meridional circulation is smaller 
than Et. It should be remarked that, for parameter values in region u A 7 ,  an 
increase in the strength of the stratification leads to a decrease in the strength of 
the laminated flow. 

The central assumption of this section is (3.7). It is seen from figure 3 that this 
assumption is valid if E < aS < E-l and a2 < 1. If US < E or 1 < a2, the strength 
of the laminated flow is less than order E4. It may be verified that for each of the 
five parameter regions in figure 3 the thermal boundary condition is homogeneous 
to dominant order. This completes the qualitative analysis of the interior flow; 
the detailed solutions for the interior flow and end-wall boundary layers are 
found in the next section. 

4. Solutions for interior and end-wall boundary layers 
Solutions of (2.2)-(2.5) subject to conditions (2.10) may now be found 

systematically for the various regions drawn on figures 2 and 3, relying upon the 
information obtained in 8 3. The analysis of this section and that for the side-wall 
layers in $ 5  will be completed for the parameter range E < a8 < E-l, a2 < 1 
[ - 1 < y < 1, x < 0; see (2.8)].  Our primary guide for this section is figure 3 and 
we shall consider the five regions marked p, ui, ZA2b, ZA, and $A7 in turn. In  what 
follows the dependent variables will be expanded in asymptotic series, the series 
being carried far enough to indicate the nature of the expansion. Part of this 
work duplicates that of Barcilon & Pedlosky (1967b)  to dominant order but 
it is instructive to investigate the lower-order terms and see how they pro- 
gressively become of dominant order. 

4.1. Solutions for parameter region 
The fluid flow for this parameter region, E < as < E4, aSa2 < E ( - 1 < y < - $, 
y < - 1 - x), is homogeneous and non-magnetic to dominant order. The stream 
function in the interior determines the strength of the laminated flow. There are 
no boundary layers on z = 0, 1 other than Ekman layers. 

Relying on ( 3 . 5 ~ )  we may assume 

u = vio(r) + aSE-4d1(r, z )  + (aSa)2E-*vi2(r, z ) ,  ( 4 . 1 ~ )  

21. = E&Fo(r) + aSpl(r, z )  + aSa2E-tp2(r, x ) ,  (4.1b) 
T = aSE-4 Til(r,  z )  + (aSa)2 E-% Ti2(r, x ) ,  (4.1 c) 
b = VSE-4bi1(r,x)+ (aXa)2E-*bi2(r,x). (4 . ld)  

The side-wall boundary-layer variables have been omitted from (4.1) and from 
similar formulations later in this section. These variables are considered in $ 5. 
In  expansion (4.1) variables with superscript il become important as aS + E4, 



540 D . E .  Loper 

leading to the solutions presented in $4.2. Also variables with superscript i2  
become important as aSa2+ E ,  leading to the solutions presented in $4.5. 

Substitution of (4.1) into (2.2)-(2.5) yields 

V2Til = - (rPO)Jr, 2vt1 = T;l, (4.2 a, b)  
(V2 - r-2) bil = -up ,  (4.2c, d )  g1 = 0 ;  

(rP2)r/r, (4.2 e,f) 
(4.2 9, h) 

p i 2  = bi1, 
2,$2 = Ti2 

V2Ti2 = - 
(V2 - r-2) bi2 = - vi2 

9 . 7  Z .  

The Ekman compatibility conditions (2.10) become 

Since Po and vio are independent of z, we obtain 

do = 4[vB(r) + vT(r)], PO = $[uB(r) - vT(r)j. (4-3) 
Also Vil = &[VT(Y) - V B ( ~ ) ]  (22 - I), 8 9 '  = T;' = $[VT(r) - vB(r)],  
which are known solutions, while 

where we have satisfied the condition bil = 0 at  r = ro. The solutions for variables 
with superscript i2  are of less interest and will not be presented. 

4.2. Solutions for parameter region vi 
In  this parameter region, with E* < as, the fluid flow is laminated to dominant 
order and the Ekman layers are absent. The expansion of the variables in this 
parameter region takes on two separate forms according as US < 1 or 1 4 as. 

If E* < aS < 1 and aSa2 < E ( - 4  < y < 0, y < - 1 -x) we may use ( 3 . 5 ~ )  
and assume 

v = viO(r, z )  f aSvil(r, z )  + cr8a2E-1~i2(r, x )  + E4 (crS)--1v*3(r, z ) ,  (4.5 a) 

$ = E(aS)-l q o ( r )  + EyP(r,  z )  + a21cpi2(r, z )  +EQ P3(r ,  z ) ,  (4.5 b )  
T = Tio(r) + aSTil(r, z )  + aSa2E-W2(r, z )  + E I ( d ) - l  Ti3(r, z ) ,  (4.5 c) 
b = 8bi0(r, z)  + u8bi1(r, z )  + uSa2E-lbi2(r, z )  -t- E* (crS)-l bi3(r, z ) ,  ( 4 . 5 4  

where vio is a t  most a linear function of z. In  expansion (4.5) variables with 
superscript il become important as aS -+ 1, leading to the solutions presented in 
the second part of this subsection. Variables with superscript i2  become 
important as aSa2+E, leading to the solutions presented in $4.4. Variables 
with superscript i 3  become important as aS+ E*, leading to the solutions 
presented in (i 4.1. 
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Substitution of (4.5) into (2.2)-(2.5) yields 

2vP = Ti,,, 9 0  + T!O = 0, V ~ O  + g(V2- r-2) bio = 0.  (4.6) 
In the interest of brevity the equations governing the variables with superscripts 
i1, i 2  and i 3  will not be presented. Their solutions are straightforward but 
complicated. The Ekman compatibility conditions for the dominant variables are 

hi0 = 0 a t  T = r,. 
The solutions of (4.6) are 

?Iio = 4 [q?(r )  + vT(r)l+ [ V T ( T )  - %&-)I (2 - *), 
vo = - T:O = 2[eg(r)  - + @ ) I .  

(4.7a) 
(4.7 zl) 

With the insertion of the factor 8 in (4.54, the solution for bio becomes (4.4). 
As aX increases to unit order, the correction terms labelled i l  in (4.5) become 

important. Also, term [7]  of (2.3) becomes important and (3.6 a)  is no longer valid. 
This is the case studied by Barcilon & Pedlosky ( 1 9 6 7 ~ ) .  We shall not study the 
case as = 0(1) but proceed to the case 1 < US < E-l,  a2 < E (0 < y < 1,  
x -= - 1). In  this parameter region layers with scale A6 occur on z = 0, 1. Within 
these layers, 8/82 = O((aS)t)  and the variables have relative sizes 

( w ,  $, T, b)  = O((aX)-l, E(aX)- t ,  (aS)-h, (aS)-I). 

In  order to satisfy all the boundary conditions on the end walls, layer A6 must 
have two separate scalings M follows: 

v = z)iO(r, z )  + (aX)-l [wil(r, z )  + Ol(r, 2) + 8 ( r ,  z")] 
+a2E-l[vi2(r,z)  +C2(r,2) + G 2 ( t - , g ) ] ,  ( 4 . 8 ~ )  

(4.8.5) $ = E(aX)-' [pl  + + $1 + a2(aS)* [$2+ @I, 
T = Ti+(aS)-*[@+!&] +(m!3)*a2E-1[@+62], (4 .8c)  
b = bi+ (as)-* [frl +S1] + (~S)-*a2E- l [62+S2] ,  (4.84 

where 2 = z(aS)1, B = (1 - 2) (as)&. 
Variables in layer A5 near x = 0 ( x  = 1) are denoted by a single (double) caret 
and superscripts 1 and 2 distinguish the two separate scalings. The interior 
variable sil becomes important as as+ 1, leading to the solutions presented in 
the first part of this subsection. The interior variable vi2 becomes important as 
a2 --f E ,  leading to the solutions presented in $4.3. 

The equations governing the interior variables are, from (2.2)-(2.5),  

(V2 - r-2) vf'J = 0, T: = 2@, (4.9a, b) 
- (ryF),,/r = V2TS, v $ )  + (V2 - r-2) bi = 0, 

(V2 - r-2) vil = 2 ~ ,  (V2 - r-2) vi2 = - 2bi 2' 

(4.9c, a) 
(4.9 e ,  f 

The equations for the lower A5 boundary layer on x = 0 are, suppressing the 

208 = P,, 2 q 2  = 09, (4.10 a, b )  superscripts 1 and 2, 

- (r$)r/r = p2s, 4 +s, = 0, ( 4 . 1 0 q d )  
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while those for the layer on z = 1 are obtained from (4.10) by changing the sign 
of each term containing 0. 

Since (4.9) and (4.10) are partial differential equations, we must specify 
conditions at r = ro as well as at  z = 0, 1: 

2)i0 = 2)il = w i 2  = 0 f bi 0 (4.11 g-h) 
at r = ro. 

(4.11 i) 

In  writing these conditions we have used the facts that fE = - (r0)@ and 
T; = (r3),/2r. 

. . , i  p :  = T: = T: = T,2 = 0 

2 

The solution for d o  satisfying ( 4 . 9 ~ )  and conditions (4.1 1 a, 9) is 

From (4.9 b)  it  is easily found that 

cosh [k,(2z - l)/2ro] sinh [k,(2z - l)/2ro] 
cosh [kn/2ro] 

Ti= -2  C B, +B,+ 
n= 1 { sinh[kn/2ro] 

Since V2Ti = 0 it follows from (4.9 c) that @ = 0. Using (4.94 and (4.1 1 b, h) we 

sinh [kn(2z - 1)/2roI 
sinh [k,/2ro] 

(B,+B;-2B,Z) 
have 

The solutions of (4.10) which satisfy the boundary conditions at r = ro are 

(4.14 a) 

(4.14 c) 

m 
6 = 2 (2rO0~/km) exp ( - kn2/2r,)~,(knr/rO). (4.14d) 

known (4.9e) may be solved for wil subject to conditions 
(4.11 d, 9) .  The solution may be simply expressed as wil = 4dO. Next we may use 
condition(4.11c)todeterminethatGk=4(B; -B,+)andGi= -4(B; +B$).Withbi 
known(4.9f) may besolvedforvi2subject toconditions (4.llf,g). Finally, (4.11e) 
may be used to determine 6; and $2. These solutions will not be presented here. 

n = l  

With Ti and 
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4.3. Solutionsfor parameter region GAzb 
The dominant-order portions of the solutions presented in $$4.1 and 4.2 
were known previously. Now we begin to present entirely new results. If 
a2E-l < aS < E-l and E < a2 (x+ 1 < y < 1,  - 1 < x) layers with scale A2b 
now occur on z = 0,  1 in addition to those with scale A 5 .  The strength of the 
laminated flow is limited by electric currents to be of smaller than unit order. The 
size of the variables in layers A2b is determined by w = O( 1 )  while the size in A 5  
is determined by the thermal boundary condition. Relying on (3.5 6 )  we may 
assume 
w = vi0(r)+E3a-l(z-~)wi1(r)  +V(r,Z)+E(r,Z) +a2(aXE)-l[0(r,9) +Z(r,Z)],  ( 4 . 1 5 ~ )  
@ = E*(aSa)-111/i(r)+a3(aX)-1E-4[$++] +a2(aX)-* [$+$I, (4.15 b)  
T = Eta- lT l (r )+aE-3[F+~]+a2(crS) - fE- l [~+~] ,  ( 4 . 1 5 ~ )  
b = E*a-l[bi(r)+6+g] +a2(crS)-*E-l[6+i], (4.15d) 

Variables in layer A2b near z = 0 ( z  = 1 )  are denoted by a single (double) overbar. 
As a2-+ E the laminated-flow term w i l  becomes of dominant order, leading to the 
solutions presented in the second part of 3 4.2. As a2+ aSE the azimuthal velocity 
in layers A 5  becomes of unit order and layers A2b and A 5  merge, leading to 
solutions presented in $4.4. 

where Z = zaE-4, Z = ( 1  - Z) aE-*. 

Substitution of (4.15) into (2.2)-(2.5) yields the interior equations 

2vil = Ti ,., Il/i + Tf = 0,  wil + [(rbi),./rIr = 0. (4.16) 

The equations governing the variables in the lower A2b layer are 
- - - 

2b, + VSi = 0, V ,  + b, = 0, BEi = T,, (r$),/r + pi, = 0. (4.17) 

The equations for the upper A2b layer are obtained from (4.17) by changing the 
sign of each term containing V .  The equations governing the variables in layers A 5  
are (4.10). The boundary conditions are 

The solutions of (4.17) satisfying conditions (4.18 b) are 
- 
b = -b i ( r ) exp( -2 -*Z) ,  ;lj = 2-*bi(r)exp(-2-*2), (4.19a, b)  

( 4 . 1 9 ~ )  

where bi(r) is as yet unknown and c is an arbitrary constant of integration. The 
solutions for the upper A2b layer are identical to (4.19) except for a change of 
sign of u and T. 

Using (4.19b) and its counterpart from the upper layer in condition (4.180.) 
leads directly to 

(4.20) vio(r) = B[wr(r) + wE(r)], bi(r) = 2-4 [wE(r) - wr(r)]. 
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The interior azimuthal velocity is once again the average of the speeds of the top 
and bottom boundaries as conjectured at the end of Q 3. 

From (4.16) we easily find that 

2vil = - = 23 [(rvT - rvB)r/r]r, Ti = 23 (rvT - rvB),./r, (4.21) 

The solution of (4.10) satisfying (4.18d) is given by (4.14). Now condition (4 .18~)  
rewires that 

(4.22) 

The tirst term of (4.22) has the form of a Dini series of Bessel functions (see 
Watson 1958, p. 580). For the present case, H +  v = 0 in Watson’s notation and 
the series should contain an initial term (n = 0). In  its absence the constant c 
provides the necessary generality. Multiplying (4.22) by r and integrating from 
r = 0 to r = ro yields 

c = J; ( 1 - $) bi(q) dq . 
The coeflicients an are determined using equation (6) on p. 577 of Watson (1958): 

where bi(r) is given by (4.20b).  

4.4. Solutions for parcmeter region CA7 

As a2-+ aSE layers A2b and A6 merge into a single layer labelled A7. The size 
of the variables in this layer is determined by the condition v = 0(1) provided 
that a6 < aSE < a 2  and E < aSa2 (3x+ 1 < y < x +  1, -2- 1 < y). Again 
relying on (3.5b) we assume 

v = vio(r)+ (ElaSa2)i (~-+)vil(r)+E(r,Z)+~(r,~)+O((aSE/a~)*), ( 4 . 2 3 ~ ~ )  
$ = (E/aS)%a-aP(r) +(Ea6/aS)i[$+$], (4.23b) 
T = (E/crSa2)*Ti(r) + (a2aS/E)i [ r f  + f’], (4 .23~)  

b = (E/aSa2)i [bi(r) + 6 + b],  (4.23 a) 
wherc Z = z ( ~ S C C ~ / E ) ~ ,  z” = (1 -z) ((Tsa2/E’)i. 

Variables in layer A7 near z = 0 ( z  = 1) are denoted by a single (double) tilde. 
As aSa2+ E the variable vil becomes of dominant order and layer A7 merges 
with the interior, leading to the solutions presented in the &st part of $4.2. As 
a6 3 aSE the boundary-layer term in $ becomes of order EJ, leading to solutions 
presented in 8 4.5. As aSE + a2 boundary-layer terms in v (not given) become of 
unit order, leading to the solutions presented in $4.3. 

The interior equations are given by (4.16). The equations governing the vari- 
ables in the lower A7 layer are 

2Ez = q, gB = &, - (rJ),/r = zg, 68 +& = 0, (4.24a-d) 

while those for the upper A7 layer are obtained from (4.24) by changing the sign 
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of each term containing Z. The boundary conditions are 
- m % wco+( i )  = (") , bc+( i )  = 0, ($)= 0 at x = (3, ( 4 . 2 5 ~ )  

'US 
N 

9 = b " = 0  at r = r o .  (4.26 d )  

The boundary-layer problems for b" and may both be expressed as 

[(rWrIr = 2bZZZBY ( 4 . 2 6 ~ )  

b = - bi(r), bz,, = 0 at x = 0, (4.26 b )  

b+O as x+-co,  ( 4 . 2 6 ~ )  

b = 0 at r = r,, (4.26 d )  

where the tildes have been omitted. This problem has solution 
00 

b = 2 A,exp ( - A,z) [cos h,x - sin A,z] Jl(7cnr/ro), 
n= 1 

(4.27) 

where J,(k,) = 0, A, = (hJ4 2*r;4 and 

Note that the conditions 6 = b" = 0 at r = r, together with (4.24) ensure that 
$ = 11. = = T, = 0 at r = r,. This allows the side-wall and end-wall boundary 

Since the problems for 6 and b are identical it follows that 6 = t. Noting that 
8/82 = - 8/aZ we see from (4.24) that v" = - v*. This fact allows us to add the upper 
and lower conditions (4.25 a) and arrive at the important result 

wio(r) = &[wT(r) -I- wB(r)] 

Ly m 

layers to  be decoupled. U 

(4.28) 

once more. Now from either of conditions (4.25a) 

Z(r, 0) = - C(r, 0 )  = i[wg(r) - wT(r)] 

and 6 is given by (4.27), where 

From (4.253) we have 
00 

bi = - A,Jl(k,r/ro), 

which can be summed using equations (3) and (4) on p. 576 of Watson (1958) to 
read 

b* = $[wB(r) - wT(r)]. (4.29) 
Finally, from (4.16) we have 

n = l  

2wi1 = - = Q[(rwT - rwB),./rIr, Ti = &(rwT - rwg),/r. (4.30) 
35 F L Y  73 
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4.5. Solutionsfor parameter region $a, 
If Ea-2 < uS g a6E-1 and a2 < 1 ( -  1 -x < y < 3x+ 1, x < 0) the size o the 
variables in layer A7 is determined by the condition $ = O(E3). Relying on 
(3.5 b )  once more we assume 

v = viO(r) + E4c2vi1(r) (z - 4) + (uSE/a6)) [v"(r, 2) + g(r,g)], (4.31 a )  

@ = Eg(crX)-1a-2p(r) +B[$+$], (4.31 b)  
T = E3 x 2 T i ( r )  + (a#)+ a-l[5! + $1, (4.31 c) 
b = E4a-*[bi(r) + 6 + g], (4.31 d )  

where z" and f are given following (4.23). As USE --f a6 the variables v" and v* become 
of unit order, leading to solutions presented in $4.4. As u.Sa2-+E layer A7 
thickens to  merge with the interior and we have the case considered in $4.1. 
As a2+ 1, v, = O(E3) and assumption (3.7) is no longer valid. 

The interior equations are given by (4.16) and the A7-layer equations by (4.24). 
The boundary conditions are 

U % 

($) = ( -)2[viO-(:z)], + 1  
b i + ( i )  = 0, (2) = 0 at z =  (i), (4 .32~-c)  

,. 
b " = b = O  at r = r o .  (4.32d) 

The problems for b" and care again identical, given by (4.26). From (4.243) we 
obtain $(r, 0) = $(r, 0). Using ( 4 . 3 2 ~ ~ )  we again have for the interior flow 

viO((r) = *[wB(r) + vr( r ) ] .  (4.33) 

Also from the boundary conditions we have (4.29) for b,. The solutions for vil, Ti 
and are given by (4.30). 

5. Solutions for side-wall boundary layers 
The purpose of this and the following section is to demonstrate that we have 

scaled the problem correctly and that we can find side-wall boundary-layer 
solutions to close the problem for each parameter region. In  this section we shall 
present the scaling, equations and general solutions for each of the side-wall 
layers which may occur in the parameter range E < aS < E-l, a2 < 1: B l ,  B2b, 
B4, B5, B7 and B8, where we have included the Ei  side-wall layer as layer B8. 
Of these layers only B7 is new and, as we shall see, its solution is surprisingly 
difficult and complicated. Following this catalogue of layer solutions we shall 
study the closure problem in 3 6. This consists of forming linear combinations of 
the solutions for the side-wall layers, which, when added to the interior solutions 
found in $4, satisfy the side-wall boundary conditions. These sections are 
primarily of technical interest and could be skipped without loss of continuity. 

Before proceeding with the catalogue of side-wall boundary-layer solutions 
let us simplify the problem. It was argued in $ 3  that (2.4) may be replaced by 
(3.6) in the interior and in all side-wall boundary layers. Also it was seen that 
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term [3] of (2 .2)  is negligibly small in the interior. From figure 2 and table 1 it 
may be seen that term [3] of (2 .2)  is also small in any layer which exists for 
a2 < 1. Consequently we may eliminate the thermal perturbation T &om direct 
consideration and reduce the interior and side-wall problem to 

2v, = - CTSE-’$ - E$,.,.,.,, 2$, = 2a2b, + Eu,, (5.11, (5.2) 

(5.3) 

v = $ = $ = b = O  a t  T = r  0’ ( 5 . 4 4 )  

v,+ (V2-r-2)  b = 0, 
with conditions 

5.1. Layer B1: the Stewartson E* layer 
In  layer Bl the variables have relative sizes 

(w, $, b)  = O(E*, Ei ,  Eg). (5.5) 

2 ~ 2  = - II.,,,,, 2$z = 2177, ~2 + b,, = 0, (5.6) 

The governing equations for the scaled variables are 

where 7 = (ro - r )  E d .  
Equations (5.6) are partial differential equations which allow satisfaction of 

one boundary condition at z = 0 and one at  z = 1. From (5.5) we see that $ is of 
the same order as in the interior while v and b in layer B 1  are smaller than in the 
interior. Therefore we specify $ = 0 at x = 0, 1 and obtain the general solution 

$ = 2 [$ne-2rn + pn cos (387,) e-,n + p, sin (347,) e-’.] sin (nm), 

b = C (nn/4)* [23hn e-2rn - (34 pn + p,) cos (34 7,) e-?n 

(5.7 b)  
n=l  
eg 

n = l  
+(3+pn-pn) sin(39~,)e-7n]sinnnx, ( 5 . 7 ~ )  

where 7, = +(2nn)*7. 

5.2. Layer B2b : the hydromagnetic side-wall layer 
I n  layer B2b the variables have relative sizes 

(v, $, b)  = O(Eo, E ( C T ~ ) - ~ ,  E k l ) .  (5.8) 

(5.9) 

The governing equations are 

24 b, + v , ~  = 0, V ,  + 26 b,, = 0, $ = - 2v,, 

where w = (yo - r )  (2a2/E)4. 

we define I’ = v + 24 b and @ = v - 24 b,  we obtain uncoupled equations 
This problem is similar to that presented in Roberts (1967, pp. 186-189). If 

r, + rw0 = 0, Q, - a,, = 0, 
which are parabolic. 

(5.10) 

35-2 
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The solutions of (5.10) may be expressed as 

(5.11 b )  

(see Carslaw & Jaeger 1959, pp. 62-63), where I',(x) = r(0, z )  and Oo(z) = O(0, z). 

(5.12) 

If Fo and Qo are constant then the solutions reduce to 
r = ro erfc [&J( 1 - 2 9 1, Q = Qo erfc [+wz-4]. 

5.3. Layer B 4 :  the buoyancy layer 

(v, $) b )  = O ( E ) ( d ) - * ,  E t ,  E#(d ' ) - l ) .  
Layer B 4  is the buoyancy layer, with scaling 

(5.13) 

The governing equations are 
$,,,, + 4$ = 0,  v y y  = 4@z, byy = - 2% (5.14) 

where y = (ro - r )  (uS/4E4)). Note that if 1 -g vS this layer is thinner than the 
Ekman layer. These are ordinary differential equations with simple negative ex- 
ponential solutions ( 5 . 1 5 ~ )  

+ = [Ij/ecosy+@siny]e-y, (6.15 b)  
b = [21crc, cosy + 2 e z  sin y]  e-7. ( 5 . 1 5 ~ )  

Since layer B 4  is always the thinnest side-wall layer when it occurs, it  usually 
must satisfy the condition ky = 0 at y = 0. This requires 

P=P. (5.16) 
Solution (5.15) with (5.16) is equivalent to that for the buoyancy layer presented 
in Barcilon & Pedlosky (1967b).  

= pe cos - 211.; sin yl e-y, 

5.4. Layer B 5 :  the hydrostatic layer 
For the variables in the hydrostatic layer B 5  we present two sets of scaling: 

(v,  $, b )  = O ( d E - 4 ,  Ea, (08)~ E-4) (5.17a) 

or (v, +, b)  = O(Eo, E(gS)- l ,  d). (6 .17b)  
I n  either case the equations are 

where 6 = ( ro-r )  (aS)d. 

layer B l ,  specify $ = 0 at z = 0, 1 .  In  this case the general solution is 

- 2~~ = $) 2$z = 1168, be, = - v ~ ,  (5.18) 

If US 4 E* we use scaling (5 .17a)  and, following the arguments above for 

W 

u = 2 (2nn)-l@% exp ( - 2 n d )  cos (nnz), 
n-1 

W 

$ = I: @n exp ( - 2nnB) sin (nm) ,  
n= 1 

( 5 . 1 9 ~ )  

(5.19 b )  

OD 

b = ( 8n27r2)-1 $n exp ( - 2nn8) sin (nrz) . ( 5 . 1 9 ~ )  
n- 1 
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On the other hand if Et < a8 scaling (5.17 b )  is applicable and we must specify 
v = 0 at x = 0, 1. Now the general solution is 

m 

v = C v, exp ( - 2nnf3) sin (nnx), 
n=l 

( 5 . 2 0 ~ )  

m 

n= 1 
$ = Z - 2nnvn exp ( - 2nn8) COB (nnz),  

b = C - (4n7r)-1 vn exp ( - 2nnO) cos (nnz). 

(5.20 b )  

( 5 . 2 0 ~ )  
co 

n=l 

5.5. Layer B7:  a new side-wall boundary layer 
Layer B7 is the only new side-wall layer to come out of the scale analysis in 
appendix A. The equations for this layer may be written as 

2vz = - aSE-l@, @, = a2bp, v, + ( ~ r S a ~ E - ~ / 8 )  b,, = 0, (5.21 a-c) 
where 6 = (aSa2/8E)* (r,, - r )  represents a stretched radial co-ordinate but the 
variables v, @ and b are unscaled. In  terms of a single variabIe (5.21) reduces to 

bgBZ = 4b,. (5.22) 

Layer B7 exists to satisfy the condition b + bi = 0 at the side wall. Whenever 
layer B7 occurs, bi is independent of z [see (4.23) and (4.31)]. If we assume that 
b is independent of z as well, the equations governing layer B 7  [either (5.21) or 
(5.22)] become degenerate owing to the presence of the z derivatives in (5.21 b). 
In  this case the thickness and structure of the layer are governed by the boundary 
conditions at z = 0 and z = 1 in a manner similar to that for the Ef layer (see 
$5.6). Whereas the Eb layer is determined solely by consideration of the Ekman 
compatibility conditions at the end walls, in the present case it is necessary to 
consider the corner regions which exist above and below layer B 7  as well, result- 
ing in a complicated analysis which has been relegated to appendix B. The result 
of that analysis is the following differential equation governing the variation of b 
in layer B7:  

( 1  + aSE-*/8) b,, = [4 + 28 (Crs)aa-l] b.  (5.23) 

The solution of (5.23) divides into three separate cases. 
If a8 < E )  and E Q cSa2 it  follows that a8 Q a2 and (5.23) is simply 

b,, = 4b. (5.24) 

I n  this case layer B7 exists with the predicted scale as layer B 7 a  and 

b = - bi(r) exp [ - (v8a2/2E)4 (ro - r ) ] ,  

v = %CTSCX'E-~( 1 - 22) b, $ = a2b. 
(5.25 a )  

(5.25 b, c) 

If E4 < aS < a2, (5.23) becomes 

(aXE-*/32) b,, = b. (5.26) 

In  this case layer B7,  as layer B7 b has a greater horizontal scale than predicted 

and b = -bi(ro)exp[-(2a/Ei)(ro-r)], (5.27 a )  
= 2 ~ 2 E 4 ( 1 - 2 z ) b ,  $ = 8E*a2(aS)-lb. (5.27 b, c) 
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If a2 < aS it follows that E4 < as and (5.23) becomes 
(+uSazE-l)* b,, = 16b. (5.28) 

In  this case layer B7,  as layer B7 c ,  has the same scale as A7 and 
b = - bi(ro) exp [ - 2( aSa2/2E)a (ro - r ) ] ,  (5.29 a)  
w = ( 2 c ~ S a ~ / E ) a ( l -  2z)b, $ = 4(2a2E/aS)*b. (5.29 b, c )  

5.6. Layer B8: the Stewartson Ei layer 
The Ei  layer must be handled with some care because the azimuthal velocity 
in this layer has a correction term which is as large as the laminated flow. 
Following Barcilon & Pedlosky (1967 b) ,  let 

w(r, z)  = do)(& z )  + vSE-4d1)(& z )  + . . . , (5 .30a)  
$(r, z )  = E4@(O)(CY z )  + u&P(& x )  + . . ., (5.30b) 
b(r ,z)  = uSb(O)($,z)+ ..., ( 5 . 3 0 ~ )  

where E =  ( r 0 - r ) E - ~ [ 1 + h a S E 4 +  ...I. 
Equations (5.1)-(5.3) become 

@) = 0, 241) = - p), 2$LO) = w@, ( 5 . 3 1 ~ )  

2$i1) = WB + 2hd#, w:') = - b g .  (5.31 d, e )  

These equations are insufficient to  determine the solutions, thus we must 

$(O) = * * d o ) ,  $(I) = 2 iW(1) at z = Q * 4. (5.32) 

specify the Ekman compatibility conditions 

This set of equations has solution 

do) = wo exp ( - 24 E) ,  $(O) = b(O) = wo(z - 4) exp ( - 24 E ) ,  (5.33 a, b )  
(5.33 c )  

d l )= [ -~wo(z-~)~+wl]exp(-24~) ,  h = -A. 4 8  (5.33d, e )  

This completes the catalogue of the side-wall boundary-layer solutions. We 
now turn to our final task of combining the solutions found above with the 
interior solutions found in $ 4  to satisfy conditions (5.4) to  dominant order. 

$(I) = [-"v 12 0 (2- - &vo + s l ( z  - *I exp ( - 24 51, 

6. The closure problem 
The analysis of this section may be simplified by noting that for the parameter 

region E* < us the thermal-wind balance is valid in the interior and in side-wall 
layers B2b, B5,  B7 and B8.  From (5 .1)  the thermal-wind balance may be 

(6.1) 
expressed as 

This equation is not valid within the boundary layer B4,  which exists to satisfy 
the conditions on $ and $r at the side wall. However, whenever we satisfy the 
condition w = 0 at r = ro by some combination of solutions for the side-wall layers 
B2b, B5, B7 and B 8  together with the interior, (6.1) shows that the condition 

2 ~ ,  = --CTSE-'$. 
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FIGURE 4. The x, y plane, showing the twelve regions in which different interior and side- 
walf-layer combinations occur. The layers occurring for each region are listed in table 4. 

$ = 0 a t  r = ro is automatically satisfied. It follows that boundary layer B4 i s  
absent to dominant order. It must be present at higher order to ensure that 
$r = 0 a t  r = ro but we shall ignore those solutions. At the same time we may 
discard the side-wall boundary conditions on $ and ?,hr and seek to  satisfy only 

by some combination of the solutions in $95.2 and 5.4-5.6 together with the 
interior solutions from $34.2-4.5. This simplification applies only if E* < asS; 
if (TX < EQ we must h d  a linear combination of the solutions in $9 5.1. and 5.5-5.6 
together with interior solutions from $4.1 or $ 4.5 which satisfy conditions 
(5.4). The closure problem must be repeated for each region in the parameter 
plane for which a different set of side-wall layers occurs or a different interior 
solution is valid. Taking into account the three possible forms for layer B7, we 

v = b = O  at r = r o  (6.2) 
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Region Interior 
number Side-wall layers solution 

1 B1, B8 P 
2 (B4),  B5, B8 

3 
4 

5 B2b, (B4) CAZb 
~ ~~ 

6 B2b, (B4) GA7 
7 (B4),  B5, B7c 

8 B2b, (B4) 
9 (B4),  B5, B7c 

11 (B4),  B5, B7a, B8 
12 3 1 ,  B7a, B8 

10 (B4),  B5, B7b &A, 

TABLE 4. A list of the side-wall-layer and interior solutions for each of the twelve para- 
meter regions labelled in figure 4. Side-wall layer B4 is indicated in parentheses since it 
does not occur to dominant order for the particular side-wall boundary conditions speciikd 
in this problem. 

have a total of twelve parameter regions to consider. These regions are drawn on 
figure 4 whilethe side-wall layers and solutions for eachregion are listed in table 4. 

(1) If E < VS < E* and ~ 8 a 2  < E we have classic homogeneous non-magnetic 
rotating flow to dominant order. The interior variables are given by (4.1) and 
(4.3). I n  this parameter region only side-wall layers B1 and B8 can exiat. They are 
capable of satisfying conditions (5.4u-c). These solutions are (5.7) and (5.33) with 

(6.3a) P n  = {vo[l+ ( - I)"] + Cv~(ro) - vr(ro)I ( - l)"I)/nn, 

(6.3b, c) 

(6.3d) 

The solution for b is given entirely by (4.4), which satisfies ( 5 . 4 4  directly. When- 
ever the E i  layer B8 occurs we have the freedom to satisfy the condition v = 0 
at r = ro to dominant order and to the next smaller order. If Crs < Ef the next 
smaller order is v = O(Ea), generated by the B1 side-wall layer; this condition is 
satisfied by (6.3). However, if E* < VS and a;Sa2 < E the next smaller order is 
v = O(VXE-*), generated by the interior and the B8 layer. This causes a change 
in the boundary-layer structure and leads to  case (2). 

(2) If E8 < VS < Et and aSa2 < E layer Bl splits into a thinner buoyancy 
layer B4, which we shall ignore, and a thicker hydrostatic layer B5. The interior 
variables are still given by (4.1) and (4.3) but now we may satisfy conditions (6.2) 
rather than (5.4). As before the function of layer B8 is to satisfy the dominant 
condition on w. This is given by (5.33), where 

210 = - .t.[wr(ro) + % P o ) l .  (6.4) 
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To next order (USE-*) the azimuthal velocity a t  r = ro has contributions from 
the interior and from layers B5 and B8 : 

a, 

[vT(ro) - vB(ro)] (z  - 4) + X 4(nn)-l $-n cos (nn-z) 
n= 1 

+ [ w ~ ( r ~ ) + ~ ~ ( r ~ ) ] ( z - ~ ) ~ + 8 ~ ( ~  = 0, (6 .5)  
where we have used (5 .19) .  This equation is equivalent to equation (5.11) of 
Barcilon & Pedlosky (1967b).  From the components of (6 .5 )  we obtain 

'1  = -&[vT(rO) + vB(rO)l, $n = - [( - l)" wT(rO) + wB(rO)l (nn)-l. (6.6) 
The solution for b remains (4 .4) .  It may easily be verified that these solutions 
satisfy @ = 0 at r = ro to O(E4). 

( 3 )  If E* < aS < 1 and aSa2 < E laminated flow dominates (i.e. vi = O(1)) 
and the interior variables are given by (4 .5) ,  (4.7) and (4.4).  In  this parameter 
region the Ea layer B8 has been absorbed into the hydrostatic layer B 5 ,  which 
now satisfies the dominant boundary condition on v. The solution for layer B 5  
is given by (5.20) with 

v. = [ - vB(ro) + ( - 1)" vT(rO)] (2nn)-1. (6 .7)  

Again b is given by (4.4),  which satisfies (6 .2b) .  
( 4 )  If 1 < aS < E-l and a2 < E the interior flow is controlled by viscous 

diffusion. The interior variables, which are given by (4 .8) ,  (4.12) and (4.13), 
directly satisfy conditions (6 .2)  to dominant order and no side-wall layers are 
necessary in this parameter region. 

This completes the problem for all non-magnetic regions with E < aS < E-l .  
We have considered the four regions at the extreme left on figure 4.  We 
now proceed to investigate the regions where magnetic effects play an important 
role. 

( 5 )  If a2 < aSE < 1 and E < a2 the relevant interior variables are given by 
(4.15) and (4.20).  In  this parameter range layer B2b exists to satisfy the side-wall 
conditions (6.2).  With scaling (5 .8)  the solutions for layer B2b are given by (5.12), 

(6 .8 )  
where ro = 3%3(ro) - B%b"o), @ = +vT(ro) - t%3(ro). 

( 6 )  If a6 < USE < a2 and E < (aS)2a2 the relevant interior variables are given 
by (4.23),  (4.28) and (4.29).  In  order to satisfy condit.ion (6.2b) in this parameter 
region we must use the scaling 

in place of (5.8) for layer B2b. Note that this generates a large azimuthal velocity 
within layer B2b. With the scaling (6.9) the solution for layer B2b is given by 
(5.12), where 

ro = - @o = 2-QT(r0) - vB(rO)]. (6.10) 

( 7 )  If aSE < (aX)2a2 < E and a6 < aSE the interior variables are still given 
by (4 .23) ,  (4.28) and (4.29) but layer B2b has bifurcated into layers B 5  and B7cy 
which exist to satisfy the conditions on w and b respectively. In  order to satisfy 
condition (6.2 b)  in this parameter region we must use the scaling 

(v, b )  = O( ( aS)A a*EA, E*( as)-$ d) ( 6 . i l )  

(v, b )  = 0(a*(r~SE)a, E i ( a S ) a d )  (6 .9)  
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for layer B7c. Again this generates a large azimuthal velocity? within layer B7c, 
which requires layer B 5  to exist with scaling 

(w, $, b )  = O((c~S)ta*Ed, Ef~d(,fl)-P, (crX)i~*E-$) (6.12) 

in order to satisfy condition (6.2 a).  The solution for layer B7c is given by (5.29), 
where bi(ro) is found from (4.29). The solution for layer B5 is given by (5.20), 

W~ = ( 4 ~ f l a ~ ) t E - 2 2 ( ~ ~ ) - ~  [1+ ( -  l)"]bi(ro). (6.13) where 

(8) If E4a-l < OS < a6E-1 and a2 < 1 the interior variables are given by 
(4.31), (4.33) and (4.29) and side-wall Iayer B2b has scaling 

(w, b )  = O(a-l, E~CY,-~). (6.14) 

The solution for layer B2b is given by (5.12) and (6.10). 
(9) If a2E < CTSE < a6 and (c~S)2a2 < E the interior variables are given by 

(4.31), (4.33) and (4.29) again and we have layers B7c and B5 with respective 

(w, b)  = O((d)+a-l ,  E*a-') (6.15) scalings 

and (w, $, b)  = O((afl)+a-l, E(gS)-)a-l, (~S)aa-'). (6.16) 

The solution for layer B7c is given by (5.29), where bi(ro) is found from (4.29). 
The solution for layer B5 is given by (5.20) and (6.13). 

(10) If ah' < a2 < E ( ~ f l ) - 2  and E* < VS the interior variables are given by 
(4.31), (4.33) and (4.29) once more and we now have layers B7b and B 5  with 

(6.17) respective scalings 

and (5.17b). The azimuthal velocity within the side-wall layers is no longer large 
as it was in cases (6)-(9); therefore the interior azimuthal velocity (4.33) again 
becomes important in the side-wall boundary condition (6.2 a). The solution for 
layer B7b is given by (5.27), where bi(ro) is found from (4.29). The solution for 
layer B5 is given by (5.20), where 

(v, b )  = O(Eo, 

W ,  = 2(nn)-l[( - 1)" vg(ro) - vr(ro)]. (6.18) 

(11) If u8E-l < a2 < 1 and E# < d3 < E3 the relevant interior variables are 
still given by (4.31), (4.33) and (4.29) but the side-wall layers now are B5, B7a 
and B8. Layer B8 satisfies condition (6.2 a) to dominant order; that solution is 
given by (5.33) and (6.4). Layer B7a satisfies condition (6.2b); that solution is 
given by (5.25), where 

bi(ro) = &E3a-2[v,(ro) - vB(r0)]. (6.19) 

Layer B5 satisfies condition (6.2~2) to order rflE-+. In  this parameter region 
azimuthal velocities of this order are generated within layers B7a and B8 but 
the laminated flow in the interior is weaker than O((rsE-*). With scaling (5.17 a) 
the solution for layer B5 is given by (5.19) and (6.6). 

t Because of the curious nature of layer B7 the order of magnitude of v is not continuous 
where parameter region (6) adjoins region (7). The order of magnitude of v would have been 
continuous there if B7 had retained its predicted scale. There is a similar disparity where 
region (8) adjoins regions (9) and (10). 
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< OSS < E i  and a2 < 1 we must satisfy condition (5.4) and the 
relevant interior variables are given by (4.31), (4.33), (4.29) and (4.30). The side- 
wall layers are B1, B7a and B8. Layers B1 and B8 play the same role as in case (I) 
and their solutions are given by (5.7), (5.33) and (6.3). Layer B7a satisfies 
condition ( 5 . 4 4  with (5.25) and (6.19). 

This completes the analysis of the closure problem and assures us that the 
problem is well posed and the scaling is correct. 

(12) If 

7. Summary and discussion 
Certain slow, steady, mechanically driven, axisymmetric motions of a stably 

stratified, electrically conducting fluid have been studied. Attention has been 
focused upon the parameter values for which hydromagnetic effects fist become 
important in a rotating stratified fluid and upon the nature of their influence on 
the flow of that fluid. 

The possible horizontal and vertical length scales which may occur in the fluid 
are catalogued in tables 1-3 and in figures I and 2 and are discussed in appendix A. 
I n  addition to the known length scales which occur in rotating stratified flow and 
in rotating hydromagnetic flow, several new scales involving both buoyant and 
magnetic forces may occur. One pair of new scales, labelled A7 and B7 in appendix 
A, are of particular interest because they occur for relatively small values of 
stratification and magnetic field, specifically when E $ a;Sa2. In  terms of dimen- 
sional parameters the condition for these new scales to occur is 

ZATgL@B2/pQ2K B 1. 

Note that this condition is independent of viscosity. 
The most important part of the analysis is contained in Q 3, where the nature 

of the interior flow is determined. In  this section the vertical shear of the azi- 
muthal velocity (referred to as the laminated flow in L) is ordered with respect 
to the Ekman number: 

A set of five constraints upon the size of k are found such that the mechanical 
forcing for the problem remains of dominant order. Two of these constraints arise 
from the azimuthal and meridional velocities in the interior [see (3.10) and (3.11 )], 
two arise from the azimuthal and meridional velocities in the end-wall boundary 
layer A7 [see (3.12) and (3.13)] and one arises from the azimuthal velocity in the 
end-wall boundary layer labelled A2b [see (3.14)]. This latter layer is essentially 
the Hartmann layer, which can occur on a scale much thicker than the Ekman 
layer under conditions of weak magnetic field and strong stratification (specifi- 
cally if E < a2 < EuS; see figure 2). Each constraint is dominant in a portion of 
the x, y plane, where the parameters x and y are defined by 

aqaz = o ( E + ~ ) .  

= E-X, US = E-V. 

The size of the exponent I% is contoured on the x, y plane in figure 3. 
Figure 3 reveals that the nature of the flow of a non-magnetic stratified 

rotating fluid, as described by Barcilon & Pedlosky (1967a, b ) ,  is altered by 
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hydromagnetic effects if Ea-2 < d 3  g 1 or if E < a2 and 1 < as. The hydro- 
magnetic interaction acts to decrease the shear in the azimuthal flow from the 
levels which would occur if 012 = 0. For relatively weak stratification (a8 = O(E4)) 
hydromagnetic effects become important in a confined stratified fluid if 
a2 2 O(E3). This is in agreement with the principal result of the similarity 
analysis of an unbounded fluid given in L. Further, if a8 2 O( 1) hydromagnetic 
effects are important if a2 2 O(E) .  This transition occurs at  a surprisingly small 
magnetic field strength, much weaker than that predicted in L. 

It should be remarked that these very interesting results occur for a constant- 
heat-flux boundary condition. It was found in L that the transition to hydro- 
magnetic flow was very sensitive to the thermal boundary condition prescribed. 
The nature of confined flow subject to a mixed (or constant temperature) thermal 
boundary condition remains to  be determined. 

Detailed solutions for the flow in the interior and in the end-wall boundary 
layers are presented in 3 4. The solutions for the side-wall boundary layers, which 
allow closure of the problem (i.e. satisfaction of the side-wall boundary condi- 
tions), are presented in 3s 5 and 6, verifying that the analysis is consistent. The 
nature of the new side-wall layer B7 is of particular interest because its scale is 
determined by the boundary conditions a t  the end walls in a manner similar to 
that for the E i  side-wall layer. The actual solution for this layer is rather compli- 
cated since i t  involves analysis of the corner regions above and below the layer. 
It turns out that layer B7 exists on one of three different scales depending upon 
the values of the parameters. 

The analysis in this paper has been performed for unit-order aspect ratio: 
ro = O(1). As the aspect ratio becomes large, end-wall scale A7 increases (see 
table 2 with I = ro) and the end-wall scale A2b, which results from a balance 
between [d] and [el in (A5), has a smaller region of validity. Therefore, both 
scales A7 and A2b, which play important roles in the dynamics of a confined fluid, 
are absent in the limit r0+ 03. 

This work has received support in part from the National Science Foundation 
under grant GA 36134 and in part from the Office of Naval Research, Contract 
N-00014-68-A-0159. This paper is Contribution no. 116 of the Geophysical Fluid 
Dynamics Institute, Florida State University. 

Appendix A 
The purpose of this appendix is to survey the possible length scales which occur 

when various terms in (2.2)-(2.5) balance each other. First we shall obtain two 
scale equations; one for vertical scales (labelled case A )  and one for horizontal 
scales (labelled case B). Following this we shall tabulate all possible scales 
resulting from these two scale equations. Finally we shall determine the regions 
in parameter space for which these scales may exist. We appear to have a three- 
parameter problem, involving E, a8 and a2, but since E is not an internal 
parameter, the parameter space is in fact a parameter plane. It is convenient to 
introduce 

a2 = E-", ~ 8 =  E - Y  (A 1) 
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and to study the 5, y plane. This eliminates E from direct consideration and 
allows definite numerical values to be assigned on the x and y axes. The signs in 
the exponents in (AI )  have been chosen such that d(a2)/dx and d(aS)/dy are 
positive when E < 1. 

The scale analysis is based upon the operator for a single variable. If we 
eliminate T, + and b from (2.3)-(2.5) in favour of v we obtain 

E(V2-r-2) _EP2(v) + 4E(V2- r-2)2v,+ a!39[(rv),./r], = 0, (A 2) 
where 9 E E (V2 - r 2 ) 2  - 209 82/89. 

Note that if we assume that the azimuthal velocity v is linear in radius r, as it is 
in von KBrmiin similarity, then the third term of (A 2) is identically zero and the 
stratification no longer plays a role in the scale analysis. 

In  order to  abstract the scale structure from (A 2), we shall neglect curvature 
terms and approximate derivatives by 

8/82 = h-1, al8r = 1-1, (A 3) 
where h and 1 represent the vertical and horizontal length scale respectively. 
(This notation follows that of Blumsack 1972). 

I n  horizontal boundary layers or shear zones, the horizontal scale of motion 
is much greater than the vertical scale: 

h < 1. (A 4) 
With (A 3) and (A 4), (A 2) may be converted to 

E3 Ea4 E E d  aSa2 ~ + ~ + ~ + h 2 / 2 - t ~  = 0 (case A) .  

[a1 PI [CI [dl [el 
The terms in (A5) have been labelled to allow individual reference. I n  this 
abstraction signs, numerical coefficients and the magnitude of the dependent 
variable are irrelevant. Equation (A5) will be used to determine the possible 
vertical scales h. Similarly, with (A 3) and 

1 < h  (A 6) 
the possible horizontal scales 1 may be determined from 

E3 Ea4 E EaS aSa2 -+-+-+-+- = 0 (case B). la h4 h212 l4 h2 
[a1 PI [CI [dl [el 

The terms in (AT) have been labelled for individual reference in a manner 
identical to that in (A5) because the corresponding terms in (A5) and (A7) 
originate from the same terms in (A 2) and represent the same physical effect. 

The full equation (A2) is of tenth order in both z and r and the full set of 
boundary conditions (2.7) consist of two conditions on @ and one condition on 
each of v, T and b at each boundary. The abstractions (A 5) and (A 7) represent 
equations which are of only eighth order in x and r .  Therefore not all the boundary 
conditions can be satisfied locally near the boundaries. This permits the interior 
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a + O  a * O  a = O  a = O  
u s + o  u s = o  u s * o  u s = o  

Full equation (A 2) 10 8 6 6 

Case B: a/& only (A 7 )  8 8 6 6 

TABLE 5. Orders of the terms in the governing equations for various 
parameter ranges 

Case A :  8/82 only (A 5 )  8 4 G 4 

flow to  be determined. Further reductions in order occur if a# or a2 or both are 
set equal to  zero. The respective orders for each possibility are presented in 
table 5. Each reduction in order corresponds to  modes which do not possess 
intrinsic length scales but exist on scales determined by the boundary conditions. 
For example if v, = 31., = 0 terms [5] and [7] in (2.3) may balance for a wide 
range of horizontal length scales satisfying conditions (A 6). The appropriate 
scale is then determined by the boundary conditions. In  homogeneous non- 
magnetic fluids this leads to the Ef side-wall scale. Recently Vempaty & Loper 
(1975) have found that this mode occurs in homogeneous hydromagnetic fluids 
with a horizontal scale (E/a2)a for 1 << a2 << E-*. (Ingham (1969) predicts the 
wrong scale for this mode.) The scale analysis below is incapable of predicting 
this important mode but it has been included in the side-wall analysis of $6. The 
scale analysis yields a limited set of possible length scales which excludes all scales 
resulting from time dependence, non-axisymmetry, nonlinearity (such as those 
found by Barcilon 1970; Loper 1972), Froude number effects (such as that found 
by Loper 1975), anisotropic diffusivity or beta-plane effects (as discussed by 
Blumsack 1973). 

The scale analysis proceeds as follows. The possible vertical or horizontal 
length scales may be determined by systematically equating two terms of (A 5) 
or (A7) respectively. Each possible scale is numbered and its properties are 
recorded in tables 1-3. In  order that the chosen terms be dominant the remaining 
three terms of (A 5) or (A 7) must be small. In  addition condition (A 4) or (A 6) 
must be satisfied. These existence conditions place limits on the range of the 
parameters E, a8 and a2 (or, more simply, x and y) for which the chosen scale 
may exist. This information is compiled in figures 1 and 2. We now turn to a brief 
discussion of the possible length scales and force balances then complete this 
appendix with a discussion of figures 1 and 2. 

I n  homogeneous non-magnetic flow (a8 = a2 = 0), (A 5) and (A 7) each reduce 
to two terms, [a] and [c], yielding a single scale labelled A 1 or 231. Scale A 1 is the 
well-known Ekman vertical scale and scale B1 is the Stewartson E* scale. In 
each scale the dominant force balance is between Coriolis and viscous forces 
(see table 1). 

In  homogeneous hydromagnetic flow (d = 0, a2 += 0), (A 5) and (A 7) each con- 
tain three terms: [a], [b] and [c]. This appears to allow two hydromagnetic length 
scales for each case, labelled A2a or B2a when [a] and [b] balance and A3 or B3 
when [b] and [c] balance. However it may be seen from (A5) that a balance 
between [b] and [c] does not yield a scale for case A so scale A3 does not exist. 
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Scale A 2 a  is the well-known Hartmann scale and scale B 2 a  is the non-rotating 
hydromagnetic side-wall scale (see Roberts 1967, pp. 186-190). These scalesresult 
from a balance between magnetic and viscous forces. Scale B 3  is a hydromagnetic 
side-wall scale recently investigated by Vempaty & Loper (1975) and results 
from a balance between Coriolis and magnetic forces. 

I n  stratified non-magnetic flow (ad + 0, a2 = 0) ,  ( A  5 )  and (A 7 )  again each 
contain three terms: [a],  [c] and [d] .  This allows two stratified length scales for 
each case, labelled A 4  or B 4  when [a] and [d] balance and A 5  or B 5  when [c] 
and [d]  balance. Scale A 4  is a buoyant Ekman scale while scale B 4  is the buoyancy 
scale studied by Barcilon & Pedlosky (1967 b ) .  These scales result from a balance 
between viscous and buoyant forces. Scale A 5  appears not to have been discussed 
in the literature although it occurs in the solution of example 2 in Barcilon & 
Pedlosky (1967a) .  Scale B 5  is the hydrostatic scale discussed by Barcilon & 
Pedlosky (19673).  These two scales result from a balance between Coriolis, 
viscous and buoyant forces. Scales B 4  and B 5  correspond to the scales c and e 
discussed by Blumsack (1973).  

In  stratified hydromagnetic flow (a8 += 0, a2 =+ 0 ) ,  (A 5 )  and (A 7 )  each contain 
all five terms. This would seem to imply that we should find five additional scales 
for each case which involve both buoyant and magnetic forces. However the 
number of additional scales may be reduced by closer inspection of ( A 5 )  and 
( A  7 ) .  In  each case ifterm [a] is greater than term [b] then term [ d ]  is greater than 
term [el and vice versa. This means that [a] and [el can never balance and that 
[b] and [d]  can never balance. The three pairs of new scales which remain are 
labelled A2b  or B2b when [d] and [el balance, A 6  or B 6  when [b] and [el balance 
and A 7  or B7 when [c] and [el balance. Scales A2b and B2b are identical in size 
to A 2 a  and B2a  (hence the labelling) but the force balances and regions of exist- 
ence differ (see table 1 and figure 2) .  Scale A 6  is a new scale resulting from a 
balance between buoyant and magnetic forces; since [b]  and [el in ( A 7 )  fail to 
contain I ,  scale B 6  does not exist. Scales A 7  and B7 are also new, resulting from 
a balance between Coriolis, buoyant and magnetic forces. Scales A 7  and B7 are 
of particular interest because they can occur for relatively weak stratification and 
magnetic fields (see figure 2 ) .  It is seen in $ 3  that scales A2b  and A 7  are instru- 
mental in determining the nature of the interior flow over a wide parameter range. 

The properties of the possible length scales discussed above are presented in 
tables 1-3. I n  presenting the length scales for each case in tables 2 and 3, allowance 
is made for the larger scale ( I  in case A or h in case B )  not to be of unit order. This 
is necessary because a given force balance may occur simultaneously on two 
separate scales. For example, Vempaty & Loper (1975) have found that scale 
B 3  occurs simultaneously with scales h = I, I = a-2 and h = ( E d ) , ,  I = (E/a2)a. 
This completes the discussion of the possible length scales. We now turn to a 
discussion of the parameter range for which each scale may exist. 

Each of the scales discussed above results from a particular balance between 
forces due to viscosity, rotation, stratification and magnetic fields. Viscous forces 
are important on some scale for all values of a8 and a2 [or of x and y ;  see ( A  I)]. 
However the remaining three types of forces each are important on some scale 
only for a limited range of parameters. The regions in which magnetic ( M ) ,  
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buoyant ( A  for Archimedean) or Coriolis (C) forces may be important are drawn 
on the x, y plane in figure 1. Seven regions occur, in which M ,  A and C are im- 
portant singly, in pairs or all three simultaneously. For parameter values in the 
lower left region only Coriolis forces may balance viscous forces and the.flow is 
homogeneous and non-magnetic to dominant order. Flow in this parameter 
region has received a great deal of attention in the literature. For parameter 
values in the lower right region magnetic forces balance viscous and flow is 
homogeneous and non-rotating to dominant order while at the upper left, 
buoyant forces are dominant and the flow is essentially non-rotating and non- 
magnetic. Barcilon & Pedlosky (1967a, b)  have investigated the nature of the 
flow which occurs for parameter values in the regions marked (C) and ( A  & C) in 
figure 1. The nature of the flow which occurs for parameter values in the regions 
marked (C), ( M  & C) and M has been investigated by Ingham (1969) and 
Vempaty & Loper (1975). 

The regions of the parameter plane for which the various length scales pre- 
sented in tables 2 and 3 may occur are drawn in figure 2. This figure is more 
complicated than figure 1 : a total of fourteen separate regions now occur. This 
fragmentation of the parameter regions occurs because more than one combina- 
tion of scales may exist in a given force-balance region. For example, in the region 
where M ,  A and C are all important, a total of six different scale combinations 
may exist. Much of this fragmentation is due to the horizontal or side-wall scales 
(case B).  Fortunately the interior flow is controlled by the vertical or end-wall 
scales (case A )  for a wide parameter range. Therefore the nature of the interior 
flow may be determined in $ 3  more simply than figure 2 appears to  indicate. 

Appendix B 
The purpose of this appendix is to derive a differential equation governing the 

variation of the variable b within layer B7 which does not have the degeneracy 
of (5.22) when b, = 0. 

Let us begin by assuming that w,, $ and b are independent of x in layer B7. 
Further, owing to symmetry, assume that v is odd about z = 8. This allows us 
to  write 

where w(6) = w(6,O). Now (5.21 a, c )  become 
w(S,z) = w(6)(1.-22), (B 1) 

(B 2) $ = (4E/aS) W ,  - 2~ + (vSE2/8E) baa = 0. 

Equation (5.21 b)  is useless and we need to obtain an additional relationship 
between $, b and w by considering the boundary conditions. 

The Ekman compatability conditions beneath layer B7 are homogeneous [vB 
and vT do not vary on the scale of S] and the forcing is provided by the condition 
on b at the side wall. Using (2.10) and (B 1) the conditions are 

b+b* = +E~[wTw*] ,  $+$* = +E~[w+v*],  T,* = 0 at z = 4 5 4 ,  
(B 3 a-c) 

b+bi=O, b * = T : = O  at r = r o ,  S=O, (B 3 4 e )  
where an asterisk denotes an unscaled corner-region variable. 
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In  order to relate b and w through the boundary conditions, it is necessary to 
consider the corner regions; by symmetry it is sufficient to consider only that 
near x = 0. The equations governing the corner regions include the dynamics of 
layer A7 and it is necessary to re-introduce the thermal perturbation T. Using 
table 2, we see that the equations governing the lower corner region are 

2 ~ :  = -T;, 11-r = a2bF, (B 4 %  b)  

(B 4c)  

(B 4 4 

9; = (~%~'/8(rs)* (FFc + T&), 
V: + (g8a2/8E)* (bfc + b,*,) = 0, 

where t; = (aSa2/8E)*z. 
The difficulty with layer B7 stems from the fact that (5.21 b)  may be integrated 

to @ = a2b +f(r), where f(r) is an arbitrary function. A similar integration of 
(B 4 b) leads to 

@* = a2b*, (B 5) 

where the function of integration has been set equal to zero using the condition 
that $* and b* tend to zero as we move out of the corner region in the axial 
direction. 

I n  the parameter region under consideration the layer B7 is thicker than 
O(E)). It follows from (5.21 c) and (B4d) that ESv << b and E*v* << b*. This 
allows the condition at x = 5 = 0 to be simplified to 

b+b* = 0, Tr = 0, $-$b = -&Ei(w+v*) a t  6 =  0. (B6a-c) 

Condition (B 6c) will provide the relationship needed between $l b and w once we 
know v* in terms of those variables. 

If we extend b(6,O) as an odd function of 6 about 6 = 0 and solve (B 4) and 
(B 5) on the domain - 00 < 6 < co, 0 < 5 < 00, the side-wall conditions on b* and 
T* [see (B3)] are automatically satisfied and we can introduce the complex 
Fourier transform to solve the corner-region equations: 

- m  

The transformed equations are 
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The solutions of (B 7) which satisfy conditions (B 8) are 

where A2, = p2 + 2ip and A; = p2 - Zip. 
Evaluating (B 9 c) at 5 = 0 provides a relation between V* and 6: 

This may be inverted using the convolution theorem to read 

--m 

where t ( S )  = " I rn  2n --m [ l - l ]pexp( - ipS)dp .  A, A, 

The solution for the variables in the corner region have negative exponential 
dependence on 5. It follows from this fact and from (B 4 4  that sgnv* = sgnb*. 
Next, using (B 6a)  we have sgnv* = -sgnb. From this we can conclude that 
the sign of t(S) must be negative. Also noting that b has been defined as odd 
about 6 = 0 and noting from (B 4) that v* is odd as well, we see that t(S) must 
be even about 6 = 0. 

Equation (B 11) may be combined with (B 6c) to provide an equation relating +, b and w. This equation, plus (B 2), yields a set of three equations for these three 
unknowns. Before combining (B 11) with (B 6c) let us first evaluate t (S) .  Rather 
than calculating t (6)  using (B 12), it  is easier to evaluate 

u(S) = 'Srn 2n [l-']exp(-ipS)dp A, A, 
and then find t (S)  from 

t( 6) = du/dS. (B 14) 

In  light of the discussion of t it  follows that u(6) is odd about 6 = 0 and that 
u( 6)  is positive for 6 > 0. By symmetry considerations we need only find u( S) for 
6 > 0. I n  this case the integral (B 13) may be evaluated by closing the contour 
in the lower half-plane and contributions to u come only from Al. If we let p = iq 
then (B 13) becomes 

u( 6)  = -!- q-t(q + 2)-* exp (Sq) dq, 2n --i* 

which has the form of a Laplace inversion. From Erd6lyi (1954, p. 235, $5) we 
have 

u(6) = e-*I,(S), (B 15) 
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where I, is a modified Bessel function. From (B 14) we have 

t (6)  = e-a[Io(6)-1,(6)]. (3 16) 

Equation (B 16) is valid only for 6 > 0. The solution for 6 < 0 follows from the 
fact that t ( 6 )  is even about 6 = 0. 

We may now combine (B a ) ,  (B 6 c )  and (B 1 I )  into a single integro-differential 
equation for b: 

This equation may be reduced to a differential equation by the following argu- 
ment. From (B 16) we see that t (6)  is of order unity and varies with 6 on a scale 
I3 = O(1). The integral term in (B 17) is important only if a2 < uX (x < y). Since 
layer B7 exists only if E < ~ S a 2  ( - 1 - x < y )  it follows that E i  < VS ( - 4 < y )  
whenever a2< VS (see figure 4 ) .  Therefore whenever the integral term is 
important (B 17) reduces to 

( ~ S a ~ / 2 E ) * b ~ ~ + S j ~  t ( q ) b ( S - q ) d q  = 0.  

In  this case the scale of variation of b is greater than that predicted by the scale 
analysis in appendix A. If b varies with 6 on a scale greater than 6 = O(l),  we 
may approximate the integral by 

--oo 

Jm t ( r ) b ( & - l ) d T  = b ( s ) S r n  - m  t ( r ) d v .  
-m 

From (B 14) and (B 15) it is easy to see that 

We finally obtain from (B 17) the differential equation governing the variation 
of b in layer B7: 

(1 + v S / ~ E ) )  baa = [4  + 2 ( 2 ~ S / a ' ) * ]  b. (B 18) 
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